Biasing Approximate Dynamic Programming with a Lower Discount Factor
نویسندگان
چکیده
Most algorithms for solving Markov decision processes rely on a discount factor, which ensures their convergence. It is generally assumed that using an artificially low discount factor will improve the convergence rate, while sacrificing the solution quality. We however demonstrate that using an artificially low discount factor may significantly improve the solution quality, when used in approximate dynamic programming. We propose two explanations of this phenomenon. The first justification follows directly from the standard approximation error bounds: using a lower discount factor may decrease the approximation error bounds. However, we also show that these bounds are loose, thus their decrease does not entirely justify the improved solution quality. We thus propose another justification: when the rewards are received only sporadically (as in the case of Tetris), we can derive tighter bounds, which support a significant improvement in the solution quality with a decreased discount factor.
منابع مشابه
OPTIMIZATION OF A PRODUCTION LOT SIZING PROBLEM WITH QUANTITY DISCOUNT
Dynamic lot sizing problem is one of the significant problem in industrial units and it has been considered by many researchers. Considering the quantity discount in purchasing cost is one of the important and practical assumptions in the field of inventory control models and it has been less focused in terms of stochastic version of dynamic lot sizing problem. In this paper, stochastic dyn...
متن کاملAn Optimal Tax Relief Policy with Aligning Markov Chain and Dynamic Programming Approach
Abstract In this paper, Markov chain and dynamic programming were used to represent a suitable pattern for tax relief and tax evasion decrease based on tax earnings in Iran from 2005 to 2009. Results, by applying this model, showed that tax evasion were 6714 billion Rials**. With 4% relief to tax payers and by calculating present value of the received tax, it was reduced to 3108 billion Rials. ...
متن کاملOptimization of a Production Lot Sizing Problem with Quantity Discount
Dynamic lot sizing problem is one of the significant problem in industrial units and it has been considered by many researchers. Considering the quantity discount in purchasing cost is one of the important and practical assumptions in the field of inventory control models and it has been less focused in terms of stochastic version of dynamic lot sizing problem. In this paper, stochastic dynamic...
متن کاملHow to Discount Deep Reinforcement Learning: Towards New Dynamic Strategies
Using deep neural nets as function approximator for reinforcement learning tasks have recently been shown to be very powerful for solving problems approaching real-world complexity such as [1]. Using these results as a benchmark, we discuss the role that the discount factor may play in the quality of the learning process of a deep Q-network (DQN). When the discount factor progressively increase...
متن کاملApproximate Incremental Dynamic Analysis Using Reduction of Ground Motion Records
Incremental dynamic analysis (IDA) requires the analysis of the non-linear response history of a structure for an ensemble of ground motions, each scaled to multiple levels of intensity and selected to cover the entire range of structural response. Recognizing that IDA of practical structures is computationally demanding, an approximate procedure based on the reduction of the number of ground m...
متن کامل